Publications


A highly efficient eco-friendly heat-driven thermoacoustic refrigerator using nitrogen and water
Xiao, L.; Chi, J.; Luo, K.; Xu, J.; Zhao, D.; Wu, Z.; Luo, E.
2024. Energy Conversion and Management, 304, Art.-Nr.: 118251. doi:10.1016/j.enconman.2024.118251
Energy conversion performance in looped and stirling traveling-wave and standing-wave thermoacoustic engines
Guo, L.; Zhao, D.; Yu, G.; Xu, J.; Su, Y.; Sun, D.; Zhang, Y.
2025. Applied Thermal Engineering, 258 (A), 124622. doi:10.1016/j.applthermaleng.2024.124622
Phase modulation analysis on a cavity-structured single-unit thermoacoustic refrigerator
Hu, Y.; Wu, Z.; Yang, R.; Luo, E.; Xu, J.
2024. Energy, 310, Art.-Nr.: 133171. doi:10.1016/j.energy.2024.133171
Influence of DC flow on the performance of a bypass-typed heat-driven thermoacoustic refrigerator
Xiao, L.; Chi, J.; Luo, K.; Wu, Z.; Xu, J.; Luo, E.
2024. Energy, 306, Art.-Nr.: 132510. doi:10.1016/j.energy.2024.132510
Study on a high-performance heat-driven thermoacoustic heat pump
Hu, Y.; Chi, J.; Wu, Z.; Zhang, L.; Yang, R.; Xu, J.; Luo, E.
2024. Applied Thermal Engineering, 253, Art.-Nr.: 123790. doi:10.1016/j.applthermaleng.2024.123790
Efficient cascade waste heat utilization using thermoacoustic engine with variable temperature heat sources
Hu, Y.; Jiang, Z.; Luo, K.; Zhao, D.; Chen, Y.; Chen, G.; Luo, E.; Xu, J.
2024. Energy Conversion and Management, 314, Art.-Nr.: 118662. doi:10.1016/j.enconman.2024.118662
Influence of length of resonance tubes on multi-stage looped thermoacoustic electric generator
Bi, T.; Wu, Z.; Zhang, L.; Xu, J.; Luo, E.; Li, C.; Zhang, B.; Chen, W.
2024. Energy, 302, Art.-Nr.: 131650. doi:10.1016/j.energy.2024.131650
SMA Film-Based Elastocaloric Cooling Devices
Xu, J.; Bruederlin, F.; Bumke, L.; Ossmer, H.; Quandt, E.; Miyazaki, S.; Kohl, M.
2024. Shape Memory and Superelasticity, 10 (2), 119–133. doi:10.1007/s40830-024-00484-y
Full-scale numerical simulations of standing-wave thermoacoustic engines with circular-pore and pin-array stacks
Chen, G.; Tao, S.; Wang, K.; Tang, L.; Li, Z.; Xu, J.; Yu, Z.
2024. International Journal of Heat and Mass Transfer, 228, Art.-Nr.: 125605. doi:10.1016/j.ijheatmasstransfer.2024.125605
Thermoacoustic micro-CHP system for low-grade thermal energy utilization in residential buildings
Hu, Y.; Luo, K.; Zhao, D.; Chi, J.; Chen, G.; Chen, Y.; Luo, E.; Xu, J.
2024. Energy, 298, Art.-Nr.: 131324. doi:10.1016/j.energy.2024.131324
Multimode thermoacoustic system for heating and cooling
Hu, Y.; Wang, B.; Wu, Z.; Hu, J.; Luo, E.; Xu, J.
2024. Applied Physics Letters, 124 (15), Art.-Nr.: 153902. doi:10.1063/5.0196770
A highly efficient heat-driven thermoacoustic cooling system: Detailed study
Xiao, L.; Luo, K.; Zhao, D.; Wu, Z.; Xu, J.; Luo, E.
2024. Energy, 293, 130610. doi:10.1016/j.energy.2024.130610
Analysis on a single-stage direct-coupled thermoacoustic refrigerator driven by low/medium-grade heat
Hu, Y.; Xu, J.; Zhao, D.; Yang, R.; Hu, J.; Luo, E.
2024. Applied Energy, 361, Art.-Nr.: 122958. doi:10.1016/j.apenergy.2024.122958
A highly efficient heat-driven thermoacoustic cooling system
Xiao, L.; Luo, K.; Wu, Z.; Chi, J.; Xu, J.; Zhang, L.; Hu, J.; Luo, E.
2024. Cell Reports Physical Science, 5 (2), 101815. doi:10.1016/j.xcrp.2024.101815
Development of a sunlight-driven thermoacoustic engine for solar energy harvesting
Chen, G.; Tao, S.; Liang, R.; Li, Z.; Sun, W.; Xu, J.; Yu, Z.
2024. Applied Thermal Engineering, 238, Art.-Nr.: 122047. doi:10.1016/j.applthermaleng.2023.122047
Transformation behavior and inverse magnetocaloric effect in Ni45Co5Mn36.7In13.3-Ge melt-spun ribbons
Norouzi-Inallu, M.; Ghotbi Varzaneh, A.; Kameli, P.; Xu, J.; Ullakko, K.; Chernenko, V.; Hosoda, H.; Salazar, D.
2024. Intermetallics, 165, Article no: 108152. doi:10.1016/j.intermet.2023.108152
Investigation on gas-coupled vibration damping modules in free-piston Stirling generator
Wang, R.; Jia, Z.; Hu, J.; Zhang, L.; Xu, J.; Luo, E.
2023. Applied Thermal Engineering, 233, 121175. doi:10.1016/j.applthermaleng.2023.121175
A high-efficiency gas–liquid coupled heat-driven thermoacoustic heat pump [Pompe à chaleur thermoacoustique à entraînement thermique à haute efficacité, couplée gaz-liquide]
Chi, J.; Xiao, L.; Wu, Z.; Xu, J.; Yang, Y.; Hu, Y.; Zhang, L.; Hu, J.; Luo, E.
2023. International Journal of Refrigeration, 155, 296 – 304. doi:10.1016/j.ijrefrig.2023.08.012
Thermoacoustic heat pump utilizing medium/low-grade heat sources for domestic building heating
Hu, Y.; Luo, K.; Zhao, D.; Wu, Z.; Yang, Y.; Luo, E.; Xu, J.
2024. Energy and Built Environment, 5 (4), 628–639. doi:10.1016/j.enbenv.2023.06.006
Performance evaluation of a liquid-sodium thermoacoustic engine with magnetohydrodynamic electricity generation based upon the Swift model
Huang, J.; Yang, R.; Wang, J.; Yang, Y.; Xu, J.; Luo, E.
2023. The Journal of the Acoustical Society of America, 154 (2), 682 – 691. doi:10.1121/10.0020537
Optimal cross-sectional area ratio between porous material and resonance tube for the onset of self-excited oscillations in standing-wave thermoacoustic engines
Chen, G.; Li, Z.; Li, X.; Xu, J.; Sun, W.; Tang, L.; Yu, Z.
2023. Thermal Science and Engineering Progress, 41, Art.-Nr.: 101856. doi:10.1016/j.tsep.2023.101856
Study on a direct-coupling thermoacoustic refrigerator using time-domain acoustic-electrical analogy method
Xiao, L.; Luo, K.; Chi, J.; Chen, G.; Wu, Z.; Luo, E.; Xu, J.
2023. Applied Energy, 339, Art.-Nr.: 120972. doi:10.1016/j.apenergy.2023.120972
Transient and steady performance analysis of a free-piston Stirling generator
Xiao, L.; Luo, K.; Luo, K.; Hu, J.; Jia, Z.; Chen, G.; Xu, J.
2023. Energy, 273, Art.-Nr.: 127184. doi:10.1016/j.energy.2023.127184
Entropy generation and CO2 emission in presence of pulsating oscillations in a bifurcating thermoacoustic combustor with a Helmholtz resonator at off-design conditions
Guan, Y.; Becker, S.; Zhao, D.; Xu, J.; Shahsavari, M.; Schluter, J.
2023. Aerospace Science and Technology, 136, Art.-Nr.: 108204. doi:10.1016/j.ast.2023.108204
A thermoacoustic cooler with a bypass expansion for distributed-temperature heat loads
Hu, Y.; Wang, X.; Wu, Z.; Zhang, L.; Chen, G.; Xu, J.; Luo, E.
2022. Applied Physics Letters, 121 (20), Art.-Nr.: 203905. doi:10.1063/5.0125314
A displacer coupled thermoacoustic cooler driven by heat and electricity
Hu, J.; Hu, J.; Sun, Y.; Xu, J.; Jia, Z.; Zhang, L.; Luo, E.; Gao, B.
2023. Applied Thermal Engineering, 220, Art.Nr. 119641. doi:10.1016/j.applthermaleng.2022.119641
A Stirling generator with multiple bypass expansion for variable-temperature waste heat recovery
Jiang, Z.; Xu, J.; Yu, G.; Yang, R.; Wu, Z.; Hu, J.; Zhang, L.; Luo, E.
2023. Applied Energy, 329, Art.-Nr.: 120242. doi:10.1016/j.apenergy.2022.120242
Time-domain acoustic-electrical analogy investigation on a high-power traveling-wave thermoacoustic electric generator
Xiao, L.; Luo, K.; Zhao, D.; Chen, G.; Bi, T.; Xu, J.; Luo, E.
2023. Energy, 263 (Part E), Art.-Nr.: 126088. doi:10.1016/j.energy.2022.126088
Numerical and experimental investigation on a novel heat-driven thermoacoustic refrigerator for room-temperature cooling
Chi, J.; Yang, Y.; Wu, Z.; Yang, R.; Li, P.; Xu, J.; Zhang, L.; Hu, J.; Luo, E.
2023. Applied Thermal Engineering, 218, Art.Nr. 119330. doi:10.1016/j.applthermaleng.2022.119330
Numerical study on a heat-driven thermoacoustic cryocooler operating near liquid-helium temperature ranges
Chi, J.; Chen, L.; Chen, G.; Zhou, Y.; Luo, E.; Xu, J.
2022. Applied Thermal Engineering, 216, Art.-Nr.: 119085. doi:10.1016/j.applthermaleng.2022.119085
Numerical study of a heat-driven thermoacoustic refrigerator based on a time-domain lumped acoustic–electrical analogy model
Xiao, L.; Xu, J.; Luo, K.; Chen, G.; Luo, E.
2022. Energy Conversion and Management, 268, Art.-Nr.: 115982. doi:10.1016/j.enconman.2022.115982
A heat-driven combined cooling and heating system based on thermoacoustic technology
Yang, Y.; Chi, J.; Wu, Z.; Yang, R.; Xu, J.; Zhang, L.; Hu, J.; Luo, E.
2022. Applied Physics Letters, 120 (22), Art.-Nr.: 223902. doi:10.1063/5.0095482
Development of a small-scale piezoelectric-driven thermoacoustic cooler
Chen, G.; Xu, J.
2022. Applied Thermal Engineering, 213, Art.-Nr.: 118667. doi:10.1016/j.applthermaleng.2022.118667