KIT
2024
Cheng, E. J.; Yang, T.; Liu, Y.; Chai, L.; Garcia-Mendez, R.; Kazyak, E.; Fu, Z.; Luo, G.; Chen, F.; Inada, R.; Badilita, V.; Duan, H.; Wang, Z.; Qin, J.; Li, H.; Orimo, S.- ichi; Kato, H.
Correlation between mechanical properties and ionic conductivity of polycrystalline sodium superionic conductors: A relative density-dominant relationship
2024. Materials Today Energy, 44, 101644. doi:10.1016/j.mtener.2024.101644
Correlation between mechanical properties and ionic conductivity of polycrystalline sodium superionic conductors: A relative density-dominant relationship
2024. Materials Today Energy, 44, 101644. doi:10.1016/j.mtener.2024.101644
Julius, L. A. N.; Akgül, D.; Krishnan, G.; Falk, F.; Korvink, J.; Badilita, V.
Portable dielectrophoresis for biology: ADEPT facilitates cell trapping, separation, and interactions
2024. Microsystems & Nanoengineering, 10 (1), Art.-Nr. 29. doi:10.1038/s41378-024-00654-z
Portable dielectrophoresis for biology: ADEPT facilitates cell trapping, separation, and interactions
2024. Microsystems & Nanoengineering, 10 (1), Art.-Nr. 29. doi:10.1038/s41378-024-00654-z
Liang, J.; Davoodi, H.; Wadhwa, S.; Badilita, V.; Korvink, J. G.
Broadband stripline Lenz lens achieves 11 × NMR signal enhancement
2024. Scientific Reports, 14 (1), Article no: 1645. doi:10.1038/s41598-023-50616-0
Broadband stripline Lenz lens achieves 11 × NMR signal enhancement
2024. Scientific Reports, 14 (1), Article no: 1645. doi:10.1038/s41598-023-50616-0
Chau-Nguyen, K.; Badilita, V.; Korvink, J. G.
Concept for a geometry-insensitive high-field magnetic resonance detector
2024. Engineering with Computers. doi:10.1007/s00366-024-02068-x
Concept for a geometry-insensitive high-field magnetic resonance detector
2024. Engineering with Computers. doi:10.1007/s00366-024-02068-x
2023
Julius, L. A. N.; Scheidt, H.; Krishnan, G.; Becker, M.; Nassar, O.; Torres-Delgado, S. M.; Mager, D.; Badilita, V.; Korvink, J. G.
Dynamic dielectrophoretic cell manipulation is enabled by an innovative electronics platform
2023. Biosensors and Bioelectronics: X, 14, Artkl.Nr.: 100333. doi:10.1016/j.biosx.2023.100333
Dynamic dielectrophoretic cell manipulation is enabled by an innovative electronics platform
2023. Biosensors and Bioelectronics: X, 14, Artkl.Nr.: 100333. doi:10.1016/j.biosx.2023.100333
2022
Julius, L. A. N.; Matter, L.; Schuergers, N.; Lützenkirchen, J.; Trouillet, V.; Gil-Díaz, T.; Mamleyev, E. R.; Wilde, A.; Badilita, V.; Korvink, J. G.
Surface characterisation reveals substrate suitability for Cyanobacterial phototaxis
2022. Acta Biomaterialia, 155, 386–399. doi:10.1016/j.actbio.2022.10.035
Surface characterisation reveals substrate suitability for Cyanobacterial phototaxis
2022. Acta Biomaterialia, 155, 386–399. doi:10.1016/j.actbio.2022.10.035
2021
Davoodi, H.; Nordin, N.; Munakata, H.; Korvink, J. G.; MacKinnon, N.; Badilita, V.
Untuned broadband spiral micro-coils achieve sensitive multi-nuclear NMR TX/RX from microfluidic samples
2021. Scientific reports, 11 (1), Art.-Nr.: 7798. doi:10.1038/s41598-021-87247-2
Untuned broadband spiral micro-coils achieve sensitive multi-nuclear NMR TX/RX from microfluidic samples
2021. Scientific reports, 11 (1), Art.-Nr.: 7798. doi:10.1038/s41598-021-87247-2
Nordin, N.; Bordonali, L.; Davoodi, H.; Ratnawati, N. D.; Gygli, G.; Korvink, J. G.; Badilita, V.; MacKinnon, N.
Real‐Time NMR Monitoring of Spatially Segregated Enzymatic Reactions in Multilayered Hydrogel Assemblies**
2021. Angewandte Chemie / International edition, 60 (35), 19176–19182. doi:10.1002/anie.202103585
Real‐Time NMR Monitoring of Spatially Segregated Enzymatic Reactions in Multilayered Hydrogel Assemblies**
2021. Angewandte Chemie / International edition, 60 (35), 19176–19182. doi:10.1002/anie.202103585
Nordin, N.; Bordonali, L.; Davoodi, H.; Ratnawati, N. D.; Gygli, G.; Korvink, J. G.; Badilita, V.; MacKinnon, N.
Real‐time NMR monitoring of spatially segregated enzymatic reactions in multilayered hydrogel assemblies
2021. Angewandte Chemie, 133 (35), 19325–19331. doi:10.1002/ange.202103585
Real‐time NMR monitoring of spatially segregated enzymatic reactions in multilayered hydrogel assemblies
2021. Angewandte Chemie, 133 (35), 19325–19331. doi:10.1002/ange.202103585
2020
Islam, M.; Arya, N.; Weidler, P. G.; Korvink, J. G.; Badilita, V.
Electrodeposition of chitosan enables synthesis of copper/carbon composites for H2O2 sensing
2020. Materials today, 17, Art.-Nr. 100338. doi:10.1016/j.mtchem.2020.100338
Electrodeposition of chitosan enables synthesis of copper/carbon composites for H2O2 sensing
2020. Materials today, 17, Art.-Nr. 100338. doi:10.1016/j.mtchem.2020.100338
Davoodi, H.; Nordin, N.; Bordonali, L.; Korvink, J.; MacKinnon, N.; Badilita, V.
An NMR-compatible microfluidic platform enabling in situ electrochemistry
2020. Lab on a chip, 20 (17), 3202–3212. doi:10.1039/D0LC00364F
An NMR-compatible microfluidic platform enabling in situ electrochemistry
2020. Lab on a chip, 20 (17), 3202–3212. doi:10.1039/D0LC00364F
Baelhadj, H. C.; Adhikari, S. S.; Davoodi, H.; Badilita, V.; Beyaz, M. İ.
A sub-cm3 energy harvester for in-vivo biosensors
2020. Microelectronic engineering, 226, 111288. doi:10.1016/j.mee.2020.111288
A sub-cm3 energy harvester for in-vivo biosensors
2020. Microelectronic engineering, 226, 111288. doi:10.1016/j.mee.2020.111288
Nordin, N.; Bordonali, L.; Korvink, J. G.; Badilita, V.; MacKinnon, N.
Towards 3D compositional control of addressable biofunctional sites within a microfluidic environment
2020. 21st International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2017; Savannah, Giorgia, 22 October 2017 through 26 October 2017, 1358–1360, Chemical and Biological Microsystems Society (CBMS)
Towards 3D compositional control of addressable biofunctional sites within a microfluidic environment
2020. 21st International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2017; Savannah, Giorgia, 22 October 2017 through 26 October 2017, 1358–1360, Chemical and Biological Microsystems Society (CBMS)
2019
Davoodi, H.; Jouda, M.; Korvink, J. G.; MacKinnon, N.; Badilita, V.
Broadband and multi-resonant sensors for NMR
2019. Progress in nuclear magnetic resonance spectroscopy, 112-113, 34–54. doi:10.1016/j.pnmrs.2019.05.001
Broadband and multi-resonant sensors for NMR
2019. Progress in nuclear magnetic resonance spectroscopy, 112-113, 34–54. doi:10.1016/j.pnmrs.2019.05.001
Korvink, J. G.; MacKinnon, N.; Badilita, V.; Jouda, M.
”Small is beautiful” in NMR
2019. Journal of magnetic resonance, 306, 112–117. doi:10.1016/j.jmr.2019.07.012
”Small is beautiful” in NMR
2019. Journal of magnetic resonance, 306, 112–117. doi:10.1016/j.jmr.2019.07.012
Abdo, M.; Badilita, V.; Korvink, J.
Spatial scanning hyperspectral imaging combining a rotating slit with a Dove prism
2019. Optics express, 27 (15), 20290–20304. doi:10.1364/OE.27.020290
Spatial scanning hyperspectral imaging combining a rotating slit with a Dove prism
2019. Optics express, 27 (15), 20290–20304. doi:10.1364/OE.27.020290
Keshavarzi, S.; Kovacs, A.; Abdo, M.; Badilita, V.; Korvink, J. G.; Mescheder, U.
Miniaturized porous silicon rugate filter wheel for multispectral imaging applications
2019. MikroSystemTechnik Kongress 2019 - Mikroelektronik MEMS-MOEMS Systemintegration - Saulen der Digitalisierung und kunstlichen Intelligenz, Proceedings, 464–467, VDE Verlag
Miniaturized porous silicon rugate filter wheel for multispectral imaging applications
2019. MikroSystemTechnik Kongress 2019 - Mikroelektronik MEMS-MOEMS Systemintegration - Saulen der Digitalisierung und kunstlichen Intelligenz, Proceedings, 464–467, VDE Verlag
Adhikari, S. S.; Zhao, L.; Dickmeis, T.; Korvink, J. G.; Badilita, V.
Inductively coupled magic angle spinning microresonators benchmarked for high-resolution single embryo metabolomic profiling
2019. The analyst, 144 (24), 7192–7199. doi:10.1039/C9AN01634A
Inductively coupled magic angle spinning microresonators benchmarked for high-resolution single embryo metabolomic profiling
2019. The analyst, 144 (24), 7192–7199. doi:10.1039/C9AN01634A
Keshavarzi, S.; Kovacs, A.; Abdo, M.; Badilita, V.; Zhu, R.; Korvink, J. G.; Mescheder, U.
Porous Silicon Based Rugate Filter Wheel for Multispectral Imaging Applications
2019. ECS journal of solid state science and technology, 8 (3), Q43–Q49. doi:10.1149/2.0251902jss
Porous Silicon Based Rugate Filter Wheel for Multispectral Imaging Applications
2019. ECS journal of solid state science and technology, 8 (3), Q43–Q49. doi:10.1149/2.0251902jss
Nordin, N.; Bordonali, L.; Badilita, V.; MacKinnon, N.
Spatial and Temporal Control Over Multilayer Bio-Polymer Film Assembly and Composition
2019. Macromolecular bioscience, 19 (4), Article: 1800372. doi:10.1002/mabi.201800372
Spatial and Temporal Control Over Multilayer Bio-Polymer Film Assembly and Composition
2019. Macromolecular bioscience, 19 (4), Article: 1800372. doi:10.1002/mabi.201800372
2018
Abdo, M.; Förster, E.; Bohnert, P.; Badilita, V.; Brunner, R.; Wallrabe, U.; Korvink, J. G.
Dual-mode pushbroom hyperspectral imaging using active system components and feed-forward compensation
2018. Review of scientific instruments, 89 (8), 083113. doi:10.1063/1.5025896
Dual-mode pushbroom hyperspectral imaging using active system components and feed-forward compensation
2018. Review of scientific instruments, 89 (8), 083113. doi:10.1063/1.5025896
Poletkin, K. V.; Lu, Z.; Moazenzadeh, A.; Mariappan, S. G.; Korvink, J. G.; Wallrabe, U.; Badilita, V.
Energy-aware 3D micro-machined inductive suspensions with polymer magnetic composite core
2018. Journal of physics / Conference Series, 1052, 012048. doi:10.1088/1742-6596/1052/1/012048
Energy-aware 3D micro-machined inductive suspensions with polymer magnetic composite core
2018. Journal of physics / Conference Series, 1052, 012048. doi:10.1088/1742-6596/1052/1/012048
Poletkin, K. V.; Shalati, R.; Korvink, J. G.; Badilita, V.
Pull-in actuation in hybrid micro-machined contactless suspension
2018. Journal of physics / Conference Series, 1052, 012035. doi:10.1088/1742-6596/1052/1/012035
Pull-in actuation in hybrid micro-machined contactless suspension
2018. Journal of physics / Conference Series, 1052, 012035. doi:10.1088/1742-6596/1052/1/012035
Poletkin, K. V.; Korvink, J. G.; Badilita, V.
Mechanical Thermal Noise in Micro-Machined Levitated Two-Axis Rate Gyroscopes
2018. IEEE sensors journal, 18 (4), 1390–1402. doi:10.1109/JSEN.2017.2785859
Mechanical Thermal Noise in Micro-Machined Levitated Two-Axis Rate Gyroscopes
2018. IEEE sensors journal, 18 (4), 1390–1402. doi:10.1109/JSEN.2017.2785859
Adhikari, S. S.; Wallrabe, U.; Badilita, V.; Korvink, J. G.
Capacitor re-design overcomes the rotation rate limit of MACS resonators
2018. Concepts in magnetic resonance / B, 47B (4), e21362. doi:10.1002/cmr.b.21362
Capacitor re-design overcomes the rotation rate limit of MACS resonators
2018. Concepts in magnetic resonance / B, 47B (4), e21362. doi:10.1002/cmr.b.21362
Beyaz, M.; Baelhadj, H.; Habibiabad, S.; Adhikari, S.; Davoodi, H.; Badilita, V.
A Non-Resonant Kinetic Energy Harvester for Bioimplantable Applications
2018. Micromachines, 9 (5), Art.Nr. 217. doi:10.3390/mi9050217
A Non-Resonant Kinetic Energy Harvester for Bioimplantable Applications
2018. Micromachines, 9 (5), Art.Nr. 217. doi:10.3390/mi9050217
Korvink, J. G.; Badilita, V.; Bordonali, L.; Jouda, M.; Mager, D.; MacKinnon, N.
Nuclear Magnetic Resonance Microscopy for In Vivo Metabolomics, Digitally Twinned by Computational Systems Biology, Needs a Sensitivity Boost
2018. Sensors and materials, 30 (2), 157–166. doi:10.18494/SAM.2018.1711
Nuclear Magnetic Resonance Microscopy for In Vivo Metabolomics, Digitally Twinned by Computational Systems Biology, Needs a Sensitivity Boost
2018. Sensors and materials, 30 (2), 157–166. doi:10.18494/SAM.2018.1711
2017
Poletkin, K.; Lu, Z.; Wallrabe, U.; Korvink, J.; Badilita, V.
Stable dynamics of micro-machined inductive contactless suspensions
2017. International journal of mechanical sciences, 131-132, 753–766. doi:10.1016/j.ijmecsci.2017.08.016
Stable dynamics of micro-machined inductive contactless suspensions
2017. International journal of mechanical sciences, 131-132, 753–766. doi:10.1016/j.ijmecsci.2017.08.016
Abdo, M.; Förster, E.; Bohnert, P.; Sturmer, M.; Badilita, V.; Brunner, R.; Wallrabe, U.; Korvink, J. G.
Automatic correction of diffraction pattern shift in a pushbroom hyperspectral imager with a piezoelectric internal line-scanning unit
2017. Photonic Instrumentation Engineering IV, San Francisco, California, United States, 31st January - 2nd February 2017. Ed.: Y. G. Soskind, Art. Nr. 1011004, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2248467
Automatic correction of diffraction pattern shift in a pushbroom hyperspectral imager with a piezoelectric internal line-scanning unit
2017. Photonic Instrumentation Engineering IV, San Francisco, California, United States, 31st January - 2nd February 2017. Ed.: Y. G. Soskind, Art. Nr. 1011004, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2248467
2016
Poletkin, K. V.; Lu, Z.; Moazenzadeh, A.; Mariappan, S. G.; Korvink, J.; Wallrabe, U.; Badilita, V.
Polymer Magnetic Composite Core Boosts Performance of 3D Micromachined Inductive Contactless Suspension
2016. IEEE magnetics letters, 7, 1307603/1–3. doi:10.1109/LMAG.2016.2612181
Polymer Magnetic Composite Core Boosts Performance of 3D Micromachined Inductive Contactless Suspension
2016. IEEE magnetics letters, 7, 1307603/1–3. doi:10.1109/LMAG.2016.2612181
Lausecker, R.; Badilita, V.; Gleißner, U.; Wallrabe, U.
Introducing natural thermoplastic shellac to microfluidics: A green fabrication method for point-of-care devices
2016. Biomicrofluidics, 10 (4), 044101. doi:10.1063/1.4955062
Introducing natural thermoplastic shellac to microfluidics: A green fabrication method for point-of-care devices
2016. Biomicrofluidics, 10 (4), 044101. doi:10.1063/1.4955062
Spengler, N.; Höfflin, J.; Moazenzadeh, A.; Mager, D.; MacKinnon, N.; Badilita, V.; Wallrabe, U.; Korvink, J. G.
Heteronuclear micro-helmholtz coil facilitates μm-range spatial and sub-Hz spectral resolution NMR of nL-volume samples on customisable microfluidic chips
2016. PLoS one, 11 (1), e0146384. doi:10.1371/journal.pone.0146384
Heteronuclear micro-helmholtz coil facilitates μm-range spatial and sub-Hz spectral resolution NMR of nL-volume samples on customisable microfluidic chips
2016. PLoS one, 11 (1), e0146384. doi:10.1371/journal.pone.0146384
2015
Poletkin, K.; Lu, Z.; Wallrabe, U.; Badilita, V.
Hybrid electromagnetic and electrostatic micromachined suspension with adjustable dynamics
2015. Journal of Physics: Conference Series, 660 (1), 012005. doi:10.1088/1742-6596/660/1/012005
Hybrid electromagnetic and electrostatic micromachined suspension with adjustable dynamics
2015. Journal of Physics: Conference Series, 660 (1), 012005. doi:10.1088/1742-6596/660/1/012005
Poletkin, K.; Lu, Z.; Wallrabe, U.; Badilita, V.
A new hybrid micromachined contactless suspension with linear and angular positioning and adjustable dynamics
2015. Journal of Microelectromechanical Systems, 24 (5), 1248–1250. doi:10.1109/JMEMS.2015.2469211
A new hybrid micromachined contactless suspension with linear and angular positioning and adjustable dynamics
2015. Journal of Microelectromechanical Systems, 24 (5), 1248–1250. doi:10.1109/JMEMS.2015.2469211
Others
- Z. Lu, Kirill Poletkin, B. den Hartogh, U. Wallrabe, V. Badilita, “3D micro-machined inductive contactless suspension: Testing and modeling”, Sensors Actuators A 220 (2014) 134–143. (PDF)
- A. Moazenzadeh, F.S. Sandoval, N. Spengler, V. Badilita, U. Wallrabe, “3-D Microtransformers for DC–DC On-Chip Power Conversion”, IEEE Trans. Power Electronics, Vol. 30, No 9, Sept. 2015. (PDF)
- Z. Lu, K. Poletkin, U. Wallrabe, V. Badilita, “Performance Characterization of Micromachined Inductive Suspensions Based on 3D Wire-Bonded Microcoils”, Micromachines 2014, 5, 1469-1484; doi:10.3390/mi5041469.
- R.Ch. Meier, J. Höfflin, V. Badilita, U. Wallrabe, J.G Korvink, “Microfluidic integration of wirebonded microcoils for on-chip applications in nuclear magnetic resonance”, J. Micromech. Microeng. 24 (2014) 045021 (12pp). (PDF)
- N. Spengler, A. Moazenzadeh, R.Ch. Meier, V. Badilita, J.G. Korvink, and U. Wallrabe, “Micro-fabricated Helmholtz coil featuring disposable microfluidic sample inserts for applications in nuclear magnetic resonance”, J. Micromech. Microeng., 2014, 24, 034004 (10pp). (PDF)
- V. Badilita, R.Ch. Meier, N. Spengler, U. Wallrabe, M. Utz, J.G. Korvink, “Microscale nuclear magnetic resonance: a tool for soft matter research”, Soft Matter, 2012, 8, 10583. (PDF)
- V. Badilita, B. Fassbender, K. Kratt, A. Wong, C. Bonhomme, D. Sakellariou, J.G. Korvink, U. Wallrabe (2012) “Microfabricated Inserts for Magic Angle Coil Spinning (MACS) Wireless NMR Spectroscopy”, PLoS ONE 7(8): e42848. doi:10.1371/journal.pone.0042848. (PDF)
- O.G. Gruschke, N. Baxan, L. Clad, K. Kratt, D. von Elverfeldt, A. Peter, J. Hennig, V. Badilita, U. Wallrabe and J.G. Korvink, “Lab on a chip phased-array MR multi-platform analysis system”, Lab Chip, 2012, 12, 495. (PDF)
- R.Ch. Meier, V. Badilita, J. Brunne, U. Wallrabe, and J.G Korvink, “Complex three-dimensional high aspect ratio microfluidic network manufactured in combined PerMX dry-resist and SU-8 technology”, Biomicrofluidics, 2011, 5, 034111. (PDF)
- S. Waselikowski, K. Kratt, V. Badilita, U. Wallrabe, J.G. Korvink, and M. Walther, “Three-dimensional microcoils as terahertz metamaterial with electric and magnetic response”, Appl. Phys. Lett., 2010, 97, 261105. (PDF)
- M. Mohmmadzadeh, N. Baxan, V. Badilita, K. Kratt, H. Weber, J.G. Korvink, U. Wallrabe, J. Hennig, and D. von Elverfeldt, “Characterization of a 3D MEMS fabricated micro-solenoid at 9.4 T”, J. Magn. Res., 2011, 208, 20–26. (PDF)
- V. Badilita, K. Kratt, N. Baxan, M. Mohmmadzadeh, T. Burger, H. Weber, D. v. Elverfeldt, J. Hennig, J.G. Korvink, and U. Wallrabe, On-chip three dimensional microcoils for MRI at the microscale, Lab Chip, 2010, 10, 1387–1390. (PDF)
- K. Kratt, V. Badilita, T. Burger, J. Mohr, M. Börner, J.G. Korvink, and U. Wallrabe, “High aspect ratio PMMA posts and characterization method for micro coils manufactured with an automatic wire bonder”, Sensors Actuators A, 2009, 156, 328–333. (PDF)