Publications
Patents
2010 to 2021 (selected patents)
Breitling F, Bykovskaya V, Leibe K, Löffler F, Märkle F, Nesterov-Müller A, Schillo S, von Bojnicic-Kninski C. (2014) Method for combinatorial particle manipulation for producing high-density molecule arrays, in particular peptide arrays, and molecule arrays that can be obtained by means thereof. Patent family EP2986370B1, US9925509B2, JP6502319B2. Licensed to SME PEPperPRINT.
Topic: Multi-material nano3D printer. (more)
Similar to the method that is described above, chemically activated amino acid building blocks are embedded into a solid polymer, but this time formulated into a material layer on top of a light absorbing polyimide foil (= “donor slide”). Instead of printing particles, a 2D laser scanning system transfers tiny material spots to selected areas of an acceptor. These material spots are nano-dimensioned in z-direction, which allows us to stack many different materials in freely chosen combinations (“nanostacks”). (more)
The machine can be used to synthesize very high-density peptide arrays, (more) but also in many other types of extremely miniaturized chemical reactions. (more)
Althuon DS, Breitling F, Bykovskaya V, Loeffler F, Nesterov-Mueller A, Popov R, Ridder B, Von Bojnicic-Kninski C. (2016) Ultrahigh-density oligomer arrays and method of production thereof. Patent family EP3362463B1, DE102015117567B4, US10376858B2. Held by KIT.
Topic: One-cavity-one-peptide-method. (more)
This patent family adds another trick to solid materials-based synthesis of peptide arrays. Similar to the method that is described above, chemically activated amino acid building blocks are embedded into a solid polymer and formulated into monodisperse particles. Instead of printing these particles, they are randomly used to fill >2,5 Mio cavities on a glass slide that are slightly larger than the particles. In other words: each cavity picks exactly one particle. There, particles are melted to elongate many different peptides on the array at once. Particles are colour-coded, e.g. green fluorescence means “Fmoc-Alanine-OPfP ester”. This allows us to easily find out for each and every cavity the sequence of the synthesized peptides, by doing a fluorescence scan for every synthesis layer.
1999-2009 (selected patents)
Breitling F, Poustka A, Groß KH, Dübel S, and Saffrich R. (1999). Method and devices for applying substances to a support, especially monomers for the combinatorial synthesis of molecule libraries. Patent family AU773048B2, EP1140977B1, US9752985B2, JP4471329B1. Licensed to PEPperPRINT GmbH.
Topic: Solid-material-based chemical synthesis. (more)
This patent family covered solid materials-based synthesis of peptide arrays. Briefly, chemically activated amino acid building blocks are embedded into a solid polymer and formulated into particles. Either a laser printer or a computer chip is used to print these particles to designated areas on an acceptor. There, particles are melted to elongate many different peptides on the array at once.
Breitling F, Moldenhauer G, Lüttgau S, Kühlwein T, and Poustka A. (2001) Methods of producing protein libraries and selection of proteins from them. Patent family EP1298207B1, WO2003029458A2.
Breitling F, Moldenhauer G, and Poustka A. (2000). Selection of monoclonal antibodies. Patent family EP1141271B1, WO2000042176A1. Licensed to SME Abeome.
Topic: Easy humanisation of mouse monoclonal antibodies. Surface displayed antibodies on eukaryotic cells.
Before 1999 (selected patents)
Breitling F, Fuchs P, Little M, and Dübel S. (1991) Recombinant antibodies at the surface of E.coli. Patent family DE4122598, EP547200B1, US5591604. Licensed to Bayer AG.
Topic: Libraries of recombinant antibodies. Surface displayed antibodies on bacteria.
Breitling F, Little M, Dübel S, Braunagel M, and Klewinghaus I. (1991) Phagemid for antibody screening. Patent family EP547201B1, EP1065271B1, JP6500930A, US6730483B2, US6387627B1. Licensed to Behringwerke and to SME Affimed.
Breitling F, Little M, Dübel S, Seehaus T, and Klewinghaus I. (1990) Herstellung und Verwendung von Genbanken synthetischer menschlicher Antikörper ("synthetic human-antibody-libraries"), Patent family AU1991070115B2, EP440146B1, US5840479, JP4211395, IE75220B1. Licensed to Behringwerke and to SME Affimed.
Breitling, F., Dübel, S., Little, M., Seehaus, T., and Klewinghaus, I. (1990) Preparation and use of gene banks of human antibodies (human antibody libraries). Patents DE4002898, EP440147B1 (issued 2004), US6319690, JP3514778B1 (issued 2004). Status: Licensed to Bayer AG.
Topic: Libraries of recombinant antibodies. In parallel with patents from Cambridge (Dr. Greg Winter), these patents covered all successful commercial methods to generate libraries of recombinant antibodies.
Textbook
Rekombinante Antikörper; Lehrbuch und Kompendium für Studium und Praxis. Zweite vollkommen neu überarbeitete Auflage
Dübel, S., Breitling, F., Frenzel, A., Jostock, Th., Marschall, A.L.J., Schirrmann, Th., Hust, M.
2019. Springer Spektrum; ISBN 978-3-662-50275-4
Recombinant Antibodies
Dübel, S.; Breitling, F.
1999. Wiley-Spektrum; ISBN 978-0471178477
Rekombinante Antikörper; Erste Auflage
Dübel, S.; Breitling, F.
1997. Spektrum Akademischer Verlag; ISBN 978-3-8274-0150-2
Awards
Breitling F and Bischoff FR. 2nd winner of the business plan competition Genius Biotech Award (March 2001; 40.000 DM, organised by the state Baden-Württemberg).
Breitling F, Bischoff FR, Wallich R, Poustka A, Stadler V, and Breitling F. Winner of Innovationswettbewerb Medizintechnik with the project Borrelia peptidome arrays (November 2001)
Stadler V, Bischoff FR, Felgenhauer T, Kring M, and Breitling F. 1st winner of the business plan competition Science4Life with the project Fertigung und Vertrieb von Biochips zur Parallel-Synthese unterschiedlicher Peptide (June 2009, 30.000 €, nation-wide competition).
Breitling F, Bischoff FR, Stadler V, Felgenhauer T, Leibe K, Fernandez S (all from DKFZ or KIT) and Güttler S, Gröning M, Willems P, Biesinger B (Fraunhofer IPA). Winner of Wissenschaftspreis des Stifterverbandes with the project Peptide laser printer (May 2008, 50.000 €).
Articles
Julius, L. A. N.; Akgül, D.; Krishnan, G.; Falk, F.; Korvink, J.; Badilita, V.
2024. Microsystems & Nanoengineering, 10 (1), Art.-Nr. 29. doi:10.1038/s41378-024-00654-z
Hüschelrath, L.; Kremer, L.; Falk, F.; Ahrens, R.; Doll, P.
2023. Current Directions in Biomedical Engineering, 9 (1), 710 – 712. doi:10.1515/cdbme-2023-1178
Eickelmann, S.; Moon, S.; Liu, Y.; Bitterer, B.; Ronneberger, S.; Bierbaum, D.; Breitling, F.; Loeffler, F. F.
2022. Langmuir, 38 (7), 2220–2226. doi:10.1021/acs.langmuir.1c02724
Paris, G.; Bierbaum, D.; Paris, M.; Mager, D.; Loeffler, F. F.
2022. Applied Sciences, 12 (3), Art.-Nr.: 1361. doi:10.3390/app12031361
Paris, G.; Heidepriem, J.; Tsouka, A.; Liu, Y.; Mattes, D. S.; Pinzón Martín, S.; Dallabernardina, P.; Mende, M.; Lindner, C.; Wawrzinek, R.; Rademacher, C.; Seeberger, P. H.; Breitling, F.; Bischoff, F. R.; Wolf, T.; Loeffler, F. F.
2022. Advanced Materials, 34 (23), Art.Nr. 2200359. doi:10.1002/adma.202200359
Falk, F.; Zhou, Z.; Klinkusch, A.; Weber, L.; Breitling, F.
2020. Biospektrum, 26 (5), 556–558. doi:10.1007/s12268-020-1440-0
Heiss, K.; Heidepriem, J.; Fischer, N.; Weber, L. K.; Dahlke, C.; Jaenisch, T.; Loeffler, F. F.
2020. Journal of proteome research, 19 (11), 4339–4354. doi:10.1021/acs.jproteome.0c00484
Mamleyev, E. R.; Falk, F.; Weidler, P. G.; Heissler, S.; Wadhwa, S.; Nassar, O.; Shyam Kumar, C. N.; Kübel, C.; Wöll, C.; Islam, M.; Mager, D.; Korvink, J. G.
2020. ACS applied materials & interfaces, 12 (47), 53193–53205. doi:10.1021/acsami.0c13058
Mende, M.; Tsouka, A.; Heidepriem, J.; Paris, G.; Mattes, D. S.; Eickelmann, S.; Bordoni, V.; Wawrzinek, R.; Fuchsberger, F. F.; Seeberger, P. H.; Rademacher, C.; Delbianco, M.; Mallagaray, A.; Loeffler, F. F.
2020. Chemistry - a European journal, 26 (44), 9954–9963. doi:10.1002/chem.202001291
Paris, G.; Klinkusch, A.; Heidepriem, J.; Tsouka, A.; Zhang, J.; Mende, M.; Mattes, D. S.; Mager, D.; Riegler, H.; Eickelmann, S.; Loeffler, F. F.
2020. Applied surface science, 508, Art. Nr.: 144973. doi:10.1016/j.apsusc.2019.144973
Aeinehvand, M. M.; Weber, L.; Jiménez, M.; Palermo, A.; Bauer, M.; Loeffler, F. F.; Ibrahim, F.; Breitling, F.; Korvink, J.; Madou, M.; Mager, D.; Martínez-Chapa, S. O.
2019. Lab on a chip, 19 (6), 1090–1100. doi:10.1039/c8lc00849c
Foertsch, T. C.; Davis, A. T.; Popov, R.; Bojničić-Kninski, C. von; Held, F. E.; Tsogoeva, S. B.; Loeffler, F. F.; Nesterov-Mueller, A.
2019. Applied Sciences, 9 (7), Article: 1303. doi:10.3390/app9071303
Jaenisch, T.; Heiss, K.; Fischer, N.; Geiger, C.; Bischoff, F. R.; Moldenhauer, G.; Rychlewski, L.; Sié, A.; Coulibaly, B.; Seeberger, P. H.; Wyrwicz, L. S.; Breitling, F.; Loeffler, F. F.
2019. Molecular & cellular proteomics, 18 (4), 642–656. doi:10.1074/mcp.RA118.000992
Mattes, D. S.; Jung, N.; Weber, L. K.; Bräse, S.; Breitling, F.
2019. Advanced materials, 31 (26), Art.Nr. 1806656. doi:10.1002/adma.201806656
Palermo, A.; Nesterov-Mueller, A.
2019. International journal of molecular sciences, 20 (3), Article: 604. doi:10.3390/ijms20030604
Palermo, A.; Thelen, R.; Weber, L.; Foertsch, T.; Rentschler, S.; Hackert, V.; Syurik, J.; Nesterov-Mueller, A.
2019. High-Throughput, 8 (2), Article: 7. doi:10.3390/ht8020007
Popov, R.; Shankara, G. K.; Bojnicic-Kninski, C. von; Barua, P.; Mattes, D.; Breitling, F.; Nesterov-Mueller, A.
2019. Scientific reports, 9 (1), Article no: 16468. doi:10.1038/s41598-019-52994-w
Ruden, S.; Rieder, A.; Chis Ster, I.; Schwartz, T.; Mikut, R.; Hilpert, K.
2019. Frontiers in microbiology, 10, Art. Nr.: 2740. doi:10.3389/fmicb.2019.02740
Atwater, J.; Mattes, D. S.; Streit, B.; Bojničić-Kninski, C. von; Loeffler, F. F.; Breitling, F.; Fuchs, H.; Hirtz, M.
2018. Advanced materials, 30 (31), 1801632/1–6. doi:10.1002/adma.201801632
Mattes, D. S.; Streit, B.; Bhandari, D. R.; Greifenstein, J.; Foertsch, T. C.; Münch, S. W.; Ridder, B.; v. Bojničić-Kninski, C.; Nesterov-Mueller, A.; Spengler, B.; Schepers, U.; Bräse, S.; Loeffler, F. F.; Breitling, F.
2018. Macromolecular rapid communications, 40 (6), Art.Nr.: 1800533. doi:10.1002/marc.201800533
Bojnicic-Kninski, C. von; Popov, R.; Dörsam, E.; Loeffler, F. F.; Breitling, F.; Nesterov-Mueller, A.
2017. Advanced functional materials, 27 (42), Art.Nr.: 1703511. doi:10.1002/adfm.201703511
Freire, M. C. L. C.; Pol-Fachin, L.; Coêlho, D. F.; Viana, I. F. T.; Magalhães, T.; Cordeiro, M. T.; Fischer, N.; Loeffler, F. F.; Jänisch, T.; Franca, R. F.; Marques, E. T. A.; Lins, R. D.
2017. ACS omega, 2 (7), 3913–3920. doi:10.1021/acsomega.7b00608
Held, F. E.; Guryev, A. A.; Fröhlich, T.; Hampel, F.; Kahnt, A.; Hutterer, C.; Steingruber, M.; Bahsi, H.; Bojničić-Kninski, C. von; Mattes, D. S.; Foertsch, T. C.; Nesterov-Mueller, A.; Marschall, M.; Tsogoeva, S. B.
2017. Nature Communications, 8, Art. Nr.: 15071. doi:10.1038/ncomms15071
Mattes, D. S.; Rentschler, S.; Foertsch, T. C.; Münch, S. W.; Loeffler, F. F.; Nesterov-Mueller, A.; Bräse, S.; Breitling, F.
2017. Small methods, 1700205. doi:10.1002/smtd.201700205
Palermo, A.; Weber, L. K.; Rentschler, S.; Isse, A.; Sedlmayr, M.; Herbster, K.; List, V.; Hubbuch, J.; Löffler, F. F.; Nesterov-Müller, A.; Breitling, F.
2017. Biotechnology journal, 12 (10), Art.Nr. 1700197/1–8. doi:10.1002/biot.201700197
Ridder, B.; Mattes, D. S.; Nesterov-Mueller, A.; Breitling, F.; Meier, M. A. R.
2017. Chemical communications, 53 (40), 5553–5556. doi:10.1039/C7CC01945A
Weber, L. K.; Isse, A.; Rentschler, S.; Kneusel, R. E.; Palermo, A.; Hubbuch, J.; Nesterov-Mueller, A.; Breitling, F.; Loeffler, F. F.
2017. Engineering in life sciences, 17 (10), 1078–1087. doi:10.1002/elsc.201700062
Weber, L. K.; Palermo, A.; Kügler, J.; Armant, O.; Isse, A.; Rentschler, S.; Jaenisch, T.; Hubbuch, J.; Dübel, S.; Nesterov-Mueller, A.; Breitling, F.; Loeffler, F. F.
2017. Journal of immunological methods, 443, 45–54. doi:10.1016/j.jim.2017.01.012
Bojnicic-Kninski, C. von; Bykovskaya, V.; Maerkle, F.; Popov, R.; Palermo, A.; Mattes, D. S.; Weber, L. K.; Ridder, B.; Foertsch, T. C.; Welle, A.; Loeffler, F. F.; Breitling, F.; Nesterov-Mueller, A.
2016. Advanced functional materials, 26 (39), 7067–7073. doi:10.1002/adfm.201603299
Knappe, D.; Ruden, S.; Langanke, S.; Tikkoo, T.; Ritzer, J.; Mikut, R.; Martin, L. L.; Hoffmann, R.; Hilpert, K.
2016. Amino Acids, 48 (1), 269–280. doi:10.1007/s00726-015-2082-2
Loeffler, F. F.; Foertsch, T. C.; Popov, R.; Mattes, D. S.; Schlageter, M.; Sedlmayr, M.; Ridder, B.; Dang, F.-X.; Bojnicic-Kninski, C. von; Weber, L. K.; Fischer, A.; Greifenstein, J.; Bykovskaya, V.; Buliev, I.; Bischoff, F. R.; Hahn, L.; Meier, M. A. R.; Bräse, S.; Powell, A. K.; Balaban, T. S.; Breitling, F.; Nesterov-Mueller, A.
2016. Nature Communications, 7, Article number 11844. doi:10.1038/ncomms11844
Löffler, F.; Breitling, F.; Nesterov-Müller, A.
2016. Biospektrum, 22 (5), 532–534. doi:10.1007/s12268-016-0720-1
Mikut, R.; Ruden, S.; Reischl, M.; Breitling, F.; Volkmer, R.; Hilpert, K.
2016. Biochimica et Biophysica Acta - Biomembranes, 1858 (5), 1024–1033. doi:10.1016/j.bbamem.2015.12.013
Muenster, B.; Welle, A.; Ridder, B.; Althuon, D.; Striffler, J.; Foertsch, T. C.; Hahn, L.; Thelen, R.; Stadler, V.; Nesterov-Mueller, A.; Breitling, F.; Loeffler, F. F.
2016. Applied surface science, 360, 306–314. doi:10.1016/j.apsusc.2015.10.223
Ridder, B.; Foertsch, T. C.; Welle, A.; Mattes, D. S.; Bojnicic-Kninski, von C. M.; Loeffler, F. F.; Nesterov-Mueller, A.; Meier, M. A. R.; Breitling, F.
2016. Applied surface science, 389, 942–951. doi:10.1016/j.apsusc.2016.07.177
Striffler, J.; Mattes, D. S.; Schillo, S.; Münster, B.; Palermo, A.; Ridder, B.; Welle, A.; Trouillet, V.; Stadler, V.; Markovic, G.; Proll, G.; Bräse, S.; Loeffler, F. F.; Nesterov-Müller, A.; Breitling, F.
2016. ChemNanoMat, 2 (9), 897–903. doi:10.1002/cnma.201600194
Weber, L. K.; Fischer, A.; Schorb, T.; Soehindrijo, M.; Förtsch, T. C.; Bojnicic-Kninski, C. von; Althuon, D.; Leffler, F. F.; Breitling, F.; Hubbuch, J.; Nesterov-Müller, A.
2016. Microsystem Technology in Germany, 50–51
Maerkle, F.; Loeffler, F. F.; Schillo, S.; Foertsch, T.; Muenster, B.; Striffler, J.; Schirwitz, C.; Bischoff, F. R.; Breitling, F.; Nesterov-Müller, A.
2014. Advanced materials, 26 (22), 3730–3734. doi:10.1002/adma.201305759
Loeffler, F. F.; Cheng, Y. C.; Muenster, B.; Striffler, J.; Liu, F. C.; Bischoff, R.; Doersam, E.; Breitling, F.; Nesterov-Mueller, A.
2013. Advances in biochemical engineering, biotechnology, Zeng, A.P. [Hrsg.] Fundamentals and Application of New Bioproduction Systems Berlin [u.a.] : Springer, 2013 (Advances in Biochemical Engineering/Biotechnology ; 137), 137, 1–23. doi:10.1007/10_2013_202
Schirwitz, C.; Loeffler, F. F.; Felgenhauer, T.; Stadler, V.; Nesterov-Mueller, A.; Dahint, R.; Breitling, F.; Bischoff, F. R.
2013. Advanced materials, 25 (11), 1598–1602. doi:10.1002/adma.201203853
Bog, U.; Huska, K.; Maerkle, F.; Nesterov-Mueller, A.; Lemmer, U.; Mappes, T.
2012. Optics express, 20 (10), 11357–11369. doi:10.1364/OE.20.011357
Guettler, S.; Fulga, S.; Grzesiak, A.; Refle, O.; Bischoff, F. R.; Breitling, F.; Stadler, V.
2012. Journal of Imaging Science and Technology, 55, 040306/1–5
Loeffler, F.; Schirwitz, C.; Wagner, J.; Koenig, K.; Maerkle, F.; Torralba, G.; Hausmann, M.; Bischoff, F. R.; Nesterov-Mueller, A.; Breitling, F.
2012. Advanced functional materials, 22 (12), 2503–2508. doi:10.1002/adfm.201103103
Schirwitz, C.; Loeffler, F. F.; Felgenhauer, T.; Stadler, V.; Breitling, F.; Bischoff, F. R.
2012. Biointerphases, 7 (1), 47–55. doi:10.1007/s13758-012-0047-5
Breitling, F.; Löffler, F.; Schirwitz, C.; Cheng, Y.-C.; Märkle, F.; König, K.; Felgenhauer, T.; Dörsam, E.; Bischoff, F. R.; Nesterov-Müller, A.
2011. Mini-reviews in organic chemistry, 8 (2), 121–131. doi:10.2174/157019311795177763
Löffler, F.; Wagner, J.; König, K.; Märkle, F.; Fernandez, S.; Schirwitz, C.; Torralba, G.; Hausmann, M.; Lindenstruth, V.; Bischoff, F. R.; Breitling, F.; Nesterov, A.
2011. Aerosol Science and Technology, 45 (1), 65–74. doi:10.1080/02786826.2010.517814
Wagner, J.; König, K.; Förtsch, T.; Löffler, F.; Fernandez, S.; Felgenhauer, T.; Painke, F.; Torralba, G.; Lindenstruth, V.; Stadler, V.; Bischoff, F. R.; Breitling, F.; Hausmann, M.; Nesterov-Müller, A.
2011. Sensors and Actuators A, 172 (2), 533–545. doi:10.1016/j.sna.2011.06.017
König, K.; Block, I.; Nesterov, A.; Torralba, G.; Fernandez, S.; Felgenhauer, T.; Leibe, K.; Schirwitz, C.; Löffler, F.; Painke, F.; Wagner, J.; Trunk, U.; Bischoff, F. R.; Breitling, F.; Stadler, V.; Hausmann, M.; Lindenstruth, V.
2010. Sensors and Actuators B, 147, 418–427. doi:10.1016/j.snb.2009.12.039
Nesterov, A.; Löffler, F.; Cheng, Y. C.; Torralba, G.; König, K.; Hausmann, M.; Lindenstruth, V.; Stadler, V.; Bischoff, F. R.; Breitling, F.
2010. Journal of Physics D, 43, 165301/1–6. doi:10.1088/0022-3727/43/16/165301
Wagner, J.; Löffler, F.; König, K.; Fernandez, S.; Nesterov-Müller, A.; Breitling, F.; Bischoff, F. R.; Stadler, V.; Hausmann, M.; Lindenstruth, V.
2010. Review of Scientific Instruments, 81, 973703/1–6. doi:10.1063/1.3456986
Before 2009 (selected publications)
Beyer, M.*, Nesterov, A.*, Block, I., König, K., Felgenhauer, T., Fernandez, S., Leibe, K., Torralba, G., Hausmann, M., Trunk, U., Lindenstruth, V., Bischoff, F.R.*, Stadler, V.*, and Breitling, F.* (2007) Combinatorial synthesis of peptide arrays onto a computer chip’s surface. Science 318, 1888
* shared first / last author
Stadler, V.*, Felgenhauer, T.*, Beyer, M., Fernandez, S., Leibe, K., Güttler, S., Gröning, M., Torralba, G., Hausmann, M., Lindenstruth, V., Nesterov, A., Block, I., Pipkorn, R., Poustka, A., Bischoff, F.R.*, and Breitling, F.* (2008) Combinatorial synthesis of peptide arrays with a laser printer. Angewandte Chemie International Edition. 47, 7132 –7135
* shared first / last author
Topic: Solid-material-based chemical synthesis. (more)
These are the first papers that describe solid material-based, miniaturized & parallelized chemical synthesis. Briefly, chemical building blocks are embedded into a solid polymer and formulated into particles. Either a laser printer or a computer chip is used to print these particles to designated areas on an acceptor. There, particles are melted to start many different coupling reactions at once.
Breitling, F., Dübel, S., Seehaus, T., Klewinghaus, I., and Little, M. (1991) A surface expression vector for antibody screening. Gene 104, 147-153
Fuchs, P., Breitling, F., Dübel, S., Seehaus, T., and Little, M. (1991) Targeting recombinant antibodies to the surface of Escherichia coli: Fusion to a peptidoglycan associated lipoprotein. (Nature)Biotechnology 9, 1369-1372
Rondot, S., Anthony, K., Dübel, S., Ida, N., Wiemann, S., Beyreuther, K., Frost, L., Little, M., and Breitling, F. (1998) Epitopes fused to F-Pilin are Incorporated into Functional Recombinant Pili. Journal of Molecular Biology 279, 589-603
Rondot, S.*, Koch, J.*, Breitling, F., and Dübel, S. (2001) A helper phage to improve single-chain antibody presentation in phage display. NatureBiotechnology 19, 75-78
* shared first author
Topic: Libraries of recombinant antibodies.
The Gene and (Nature)Biotechnology papers are the second and third papers to describe recombinant antibodies. The gene paper is the first paper to show that phagemids instead of normal filamentous phages can be used to display recombinant antibodies on a phage via a fusion protein (= antibody-pIII). All recombinant antibody libraries that are used today use this principle. The reason is simple: only when the phagemid – that codes for the recombinant antibody-pIII fusion protein – is packaged into particles, the expression of the antibody is turned on, resulting in only moderate selective pressure against productive antibody expression.
The Journal of Molecular Biology & Nature Biotechnology papers describe another important trick to build huge libraries of antibodies fused to phagemid particles (that code for the antibody): Using a wildtype phage with wildtype pIII envelope protein to package phagemids into particles means that most particles display only a few antibody-pIII proteins on their surface. Therefore, we designed a mutant helper phage that is devoid of wildtype pIII, and, therefore, is forced to use antibody-pIII when assembling the phage particle.