Publications

Patents

2010 to 2021 (selected patents)

Breitling F, Bykovskaya V, Leibe K, Löffler F, Märkle F, Nesterov-Müller A, Schillo S, von Bojnicic-Kninski C. (2014) Method for combinatorial particle manipulation for producing high-density molecule arrays, in particular peptide arrays, and molecule arrays that can be obtained by means thereof. Patent family EP2986370B1, US9925509B2, JP6502319B2. Licensed to SME PEPperPRINT.

Topic: Multi-material nano3D printer. (more)
Similar to the method that is described above, chemically activated amino acid building blocks are embedded into a solid polymer, but this time formulated into a material layer on top of a light absorbing polyimide foil (= “donor slide”). Instead of printing particles, a 2D laser scanning system transfers tiny material spots to selected areas of an acceptor. These material spots are nano-dimensioned in z-direction, which allows us to stack many different materials in freely chosen combinations (“nanostacks”). (more
The machine can be used to synthesize very high-density peptide arrays, (more) but also in many other types of extremely miniaturized chemical reactions. (more)

Althuon DS, Breitling F, Bykovskaya V, Loeffler F, Nesterov-Mueller A, Popov R, Ridder B, Von Bojnicic-Kninski C. (2016) Ultrahigh-density oligomer arrays and method of production thereof. Patent family EP3362463B1, DE102015117567B4, US10376858B2. Held by KIT.

Topic: One-cavity-one-peptide-method. (more)
This patent family adds another trick to solid materials-based synthesis of peptide arrays. Similar to the method that is described above, chemically activated amino acid building blocks are embedded into a solid polymer and formulated into monodisperse particles. Instead of printing these particles, they are randomly used to fill >2,5 Mio cavities on a glass slide that are slightly larger than the particles. In other words: each cavity picks exactly one particle. There, particles are melted to elongate many different peptides on the array at once. Particles are colour-coded, e.g. green fluorescence means “Fmoc-Alanine-OPfP ester”. This allows us to easily find out for each and every cavity the sequence of the synthesized peptides, by doing a fluorescence scan for every synthesis layer.

1999-2009 (selected patents)

Breitling F, Poustka A, Groß KH, Dübel S, and Saffrich R. (1999). Method and devices for applying substances to a support, especially monomers for the combinatorial synthesis of molecule libraries. Patent family AU773048B2, EP1140977B1, US9752985B2, JP4471329B1. Licensed to PEPperPRINT GmbH.

Topic: Solid-material-based chemical synthesis. (more)
This patent family covered solid materials-based synthesis of peptide arrays. Briefly, chemically activated amino acid building blocks are embedded into a solid polymer and formulated into particles. Either a laser printer or a computer chip is used to print these particles to designated areas on an acceptor. There, particles are melted to elongate many different peptides on the array at once.

Breitling F, Moldenhauer G, Lüttgau S, Kühlwein T, and Poustka A. (2001) Methods of producing protein libraries and selection of proteins from them. Patent family EP1298207B1, WO2003029458A2.

Breitling F, Moldenhauer G, and Poustka A. (2000). Selection of monoclonal antibodies. Patent family EP1141271B1, WO2000042176A1. Licensed to SME Abeome.

Topic: Easy humanisation of mouse monoclonal antibodies. Surface displayed antibodies on eukaryotic cells.

Before 1999 (selected patents)

Breitling F, Fuchs P, Little M, and Dübel S. (1991) Recombinant antibodies at the surface of E.coli. Patent family DE4122598, EP547200B1, US5591604. Licensed to Bayer AG.

Topic: Libraries of recombinant antibodies. Surface displayed antibodies on bacteria.

Breitling F, Little M, Dübel S, Braunagel M, and Klewinghaus I. (1991) Phagemid for antibody screening. Patent family EP547201B1, EP1065271B1, JP6500930A, US6730483B2, US6387627B1. Licensed to Behringwerke and to SME Affimed.

Breitling F, Little M, Dübel S, Seehaus T, and Klewinghaus I. (1990) Herstellung und Verwendung von Genbanken synthetischer menschlicher Antikörper ("synthetic human-antibody-libraries"), Patent family AU1991070115B2, EP440146B1, US5840479, JP4211395, IE75220B1. Licensed to Behringwerke and to SME Affimed.

Breitling, F., Dübel, S., Little, M., Seehaus, T., and Klewinghaus, I. (1990) Preparation and use of gene banks of human antibodies (human antibody libraries). Patents DE4002898, EP440147B1 (issued 2004), US6319690, JP3514778B1 (issued 2004). Status: Licensed to Bayer AG.

Topic: Libraries of recombinant antibodies. In parallel with patents from Cambridge (Dr. Greg Winter), these patents covered all successful commercial methods to generate libraries of recombinant antibodies.

Textbook

Rekombinante Antikörper; Lehrbuch und Kompendium für Studium und Praxis. Zweite vollkommen neu überarbeitete Auflage
Dübel, S., Breitling, F., Frenzel, A., Jostock, Th., Marschall, A.L.J., Schirrmann, Th., Hust, M.
2019. Springer Spektrum; ISBN 978-3-662-50275-4

Recombinant Antibodies
Dübel, S.; Breitling, F.
1999. Wiley-Spektrum; ISBN 978-0471178477

Rekombinante Antikörper; Erste Auflage
Dübel, S.; Breitling, F.
1997. Spektrum Akademischer Verlag; ISBN 978-3-8274-0150-2

Awards

Breitling F and Bischoff FR. 2nd winner of the business plan competition Genius Biotech Award (March 2001; 40.000 DM, organised by the state Baden-Württemberg).

Breitling F, Bischoff FR, Wallich R, Poustka A, Stadler V, and Breitling F. Winner of Innovationswettbewerb Medizintechnik with the project Borrelia peptidome arrays (November 2001)

Stadler V, Bischoff FR, Felgenhauer T, Kring M, and Breitling F. 1st winner of the business plan competition Science4Life with the project Fertigung und Vertrieb von Biochips zur Parallel-Synthese unterschiedlicher Peptide (June 2009, 30.000 €, nation-wide competition).

Breitling F, Bischoff FR, Stadler V, Felgenhauer T, Leibe K, Fernandez S (all from DKFZ or KIT) and Güttler S, Gröning M, Willems P, Biesinger B (Fraunhofer IPA). Winner of Wissenschaftspreis des Stifterverbandes with the project Peptide laser printer (May 2008, 50.000 €).

Articles


2024
Portable dielectrophoresis for biology: ADEPT facilitates cell trapping, separation, and interactions
Julius, L. A. N.; Akgül, D.; Krishnan, G.; Falk, F.; Korvink, J.; Badilita, V.
2024. Microsystems & Nanoengineering, 10 (1), Art.-Nr. 29. doi:10.1038/s41378-024-00654-zFull textFull text of the publication as PDF document
2023
Fabrication of biomimetic antibacterial titanium surfaces by hydrothermal oxidation
Hüschelrath, L.; Kremer, L.; Falk, F.; Ahrens, R.; Doll, P.
2023. Current Directions in Biomedical Engineering, 9 (1), 710 – 712. doi:10.1515/cdbme-2023-1178Full textFull text of the publication as PDF document
2022
Assessing Polymer-Surface Adhesion with a Polymer Collection
Eickelmann, S.; Moon, S.; Liu, Y.; Bitterer, B.; Ronneberger, S.; Bierbaum, D.; Breitling, F.; Loeffler, F. F.
2022. Langmuir, 38 (7), 2220–2226. doi:10.1021/acs.langmuir.1c02724Full textFull text of the publication as PDF document
Automated Laser‐Transfer Synthesis of High‐Density Microarrays for Infectious Disease Screening
Paris, G.; Heidepriem, J.; Tsouka, A.; Liu, Y.; Mattes, D. S.; Pinzón Martín, S.; Dallabernardina, P.; Mende, M.; Lindner, C.; Wawrzinek, R.; Rademacher, C.; Seeberger, P. H.; Breitling, F.; Bischoff, F. R.; Wolf, T.; Loeffler, F. F.
2022. Advanced Materials, 34 (23), Art.Nr. 2200359. doi:10.1002/adma.202200359Full textFull text of the publication as PDF document
2020
Polyaramid-Based Flexible Antibacterial Coatings Fabricated Using Laser-Induced Carbonization and Copper Electroplating
Mamleyev, E. R.; Falk, F.; Weidler, P. G.; Heissler, S.; Wadhwa, S.; Nassar, O.; Shyam Kumar, C. N.; Kübel, C.; Wöll, C.; Islam, M.; Mager, D.; Korvink, J. G.
2020. ACS applied materials & interfaces, 12 (47), 53193–53205. doi:10.1021/acsami.0c13058Full textFull text of the publication as PDF document
On‐Chip Neo‐Glycopeptide Synthesis for Multivalent Glycan Presentation
Mende, M.; Tsouka, A.; Heidepriem, J.; Paris, G.; Mattes, D. S.; Eickelmann, S.; Bordoni, V.; Wawrzinek, R.; Fuchsberger, F. F.; Seeberger, P. H.; Rademacher, C.; Delbianco, M.; Mallagaray, A.; Loeffler, F. F.
2020. Chemistry - a European journal, 26 (44), 9954–9963. doi:10.1002/chem.202001291Full textFull text of the publication as PDF document
Laser-induced forward transfer of soft material nanolayers with millisecond pulses shows contact-based material deposition
Paris, G.; Klinkusch, A.; Heidepriem, J.; Tsouka, A.; Zhang, J.; Mende, M.; Mattes, D. S.; Mager, D.; Riegler, H.; Eickelmann, S.; Loeffler, F. F.
2020. Applied surface science, 508, Art. Nr.: 144973. doi:10.1016/j.apsusc.2019.144973
2019
Elastic reversible valves on centrifugal microfluidic platforms
Aeinehvand, M. M.; Weber, L.; Jiménez, M.; Palermo, A.; Bauer, M.; Loeffler, F. F.; Ibrahim, F.; Breitling, F.; Korvink, J.; Madou, M.; Mager, D.; Martínez-Chapa, S. O.
2019. Lab on a chip, 19 (6), 1090–1100. doi:10.1039/c8lc00849c
Spatial Modes of Laser-Induced Mass Transfer in Micro-Gaps
Foertsch, T. C.; Davis, A. T.; Popov, R.; Bojničić-Kninski, C. von; Held, F. E.; Tsogoeva, S. B.; Loeffler, F. F.; Nesterov-Mueller, A.
2019. Applied Sciences, 9 (7), Article: 1303. doi:10.3390/app9071303Full textFull text of the publication as PDF document
High-density peptide arrays help to identify linear immunogenic B cell epitopes in individuals naturally exposed to malaria infection
Jaenisch, T.; Heiss, K.; Fischer, N.; Geiger, C.; Bischoff, F. R.; Moldenhauer, G.; Rychlewski, L.; Sié, A.; Coulibaly, B.; Seeberger, P. H.; Wyrwicz, L. S.; Breitling, F.; Loeffler, F. F.
2019. Molecular & cellular proteomics, 18 (4), 642–656. doi:10.1074/mcp.RA118.000992
Vertical Scanning Interferometry for Label-Free Detection of Peptide-Antibody Interactions
Palermo, A.; Thelen, R.; Weber, L.; Foertsch, T.; Rentschler, S.; Hackert, V.; Syurik, J.; Nesterov-Mueller, A.
2019. High-Throughput, 8 (2), Article: 7. doi:10.3390/ht8020007Full textFull text of the publication as PDF document
Stochastic deposition of amino acids into microcavities via microparticles
Popov, R.; Shankara, G. K.; Bojnicic-Kninski, C. von; Barua, P.; Mattes, D.; Breitling, F.; Nesterov-Mueller, A.
2019. Scientific reports, 9 (1), Article no: 16468. doi:10.1038/s41598-019-52994-wFull textFull text of the publication as PDF document
2018
Combinatorial Synthesis of Macromolecular Arrays by Microchannel Cantilever Spotting (µCS)
Atwater, J.; Mattes, D. S.; Streit, B.; Bojničić-Kninski, C. von; Loeffler, F. F.; Breitling, F.; Fuchs, H.; Hirtz, M.
2018. Advanced materials, 30 (31), 1801632/1–6. doi:10.1002/adma.201801632
Combinatorial Synthesis of Peptoid Arrays via Laser-Based Stacking of Multiple Polymer Nanolayers
Mattes, D. S.; Streit, B.; Bhandari, D. R.; Greifenstein, J.; Foertsch, T. C.; Münch, S. W.; Ridder, B.; v. Bojničić-Kninski, C.; Nesterov-Mueller, A.; Spengler, B.; Schepers, U.; Bräse, S.; Loeffler, F. F.; Breitling, F.
2018. Macromolecular rapid communications, 40 (6), Art.Nr.: 1800533. doi:10.1002/marc.201800533Full textFull text of the publication as PDF document
2017
Combinatorial Particle Patterning
Bojnicic-Kninski, C. von; Popov, R.; Dörsam, E.; Loeffler, F. F.; Breitling, F.; Nesterov-Mueller, A.
2017. Advanced functional materials, 27 (42), Art.Nr.: 1703511. doi:10.1002/adfm.201703511
Mapping Putative B-Cell Zika Virus NS1 Epitopes Provides Molecular Basis for Anti-NS1 Antibody Discrimination between Zika and Dengue Viruses
Freire, M. C. L. C.; Pol-Fachin, L.; Coêlho, D. F.; Viana, I. F. T.; Magalhães, T.; Cordeiro, M. T.; Fischer, N.; Loeffler, F. F.; Jänisch, T.; Franca, R. F.; Marques, E. T. A.; Lins, R. D.
2017. ACS omega, 2 (7), 3913–3920. doi:10.1021/acsomega.7b00608
Facile access to potent antiviral quinazoline heterocycles with fluorescence properties via merging metal-free domino reactions
Held, F. E.; Guryev, A. A.; Fröhlich, T.; Hampel, F.; Kahnt, A.; Hutterer, C.; Steingruber, M.; Bahsi, H.; Bojničić-Kninski, C. von; Mattes, D. S.; Foertsch, T. C.; Nesterov-Mueller, A.; Marschall, M.; Tsogoeva, S. B.
2017. Nature Communications, 8, Art. Nr.: 15071. doi:10.1038/ncomms15071Full textFull text of the publication as PDF document
A Trifunctional Linker for Purified 3D Assembled Peptide Structure Arrays
Mattes, D. S.; Rentschler, S.; Foertsch, T. C.; Münch, S. W.; Loeffler, F. F.; Nesterov-Mueller, A.; Bräse, S.; Breitling, F.
2017. Small methods, 1700205. doi:10.1002/smtd.201700205
Identification of a Tetanus Toxin Specific Epitope in Single Amino Acid Resolution
Palermo, A.; Weber, L. K.; Rentschler, S.; Isse, A.; Sedlmayr, M.; Herbster, K.; List, V.; Hubbuch, J.; Löffler, F. F.; Nesterov-Müller, A.; Breitling, F.
2017. Biotechnology journal, 12 (10), Art.Nr. 1700197/1–8. doi:10.1002/biot.201700197
Peptide array functionalization via the Ugi four-component reaction
Ridder, B.; Mattes, D. S.; Nesterov-Mueller, A.; Breitling, F.; Meier, M. A. R.
2017. Chemical communications, 53 (40), 5553–5556. doi:10.1039/C7CC01945A
Antibody fingerprints in lyme disease deciphered with high density peptide arrays
Weber, L. K.; Isse, A.; Rentschler, S.; Kneusel, R. E.; Palermo, A.; Hubbuch, J.; Nesterov-Mueller, A.; Breitling, F.; Loeffler, F. F.
2017. Engineering in life sciences, 17 (10), 1078–1087. doi:10.1002/elsc.201700062
Single amino acid fingerprinting of the human antibody repertoire with high density peptide arrays
Weber, L. K.; Palermo, A.; Kügler, J.; Armant, O.; Isse, A.; Rentschler, S.; Jaenisch, T.; Hubbuch, J.; Dübel, S.; Nesterov-Mueller, A.; Breitling, F.; Loeffler, F. F.
2017. Journal of immunological methods, 443, 45–54. doi:10.1016/j.jim.2017.01.012
2016
Selective Functionalization of Microstructured Surfaces by Laser-Assisted Particle Transfer
Bojnicic-Kninski, C. von; Bykovskaya, V.; Maerkle, F.; Popov, R.; Palermo, A.; Mattes, D. S.; Weber, L. K.; Ridder, B.; Foertsch, T. C.; Welle, A.; Loeffler, F. F.; Breitling, F.; Nesterov-Mueller, A.
2016. Advanced functional materials, 26 (39), 7067–7073. doi:10.1002/adfm.201603299Full textFull text of the publication as PDF document
Optimization of oncocin for antibacterial activity using a SPOT synthesis approach: Extending the pathogen spectrum to Staphylococcus aureus
Knappe, D.; Ruden, S.; Langanke, S.; Tikkoo, T.; Ritzer, J.; Mikut, R.; Martin, L. L.; Hoffmann, R.; Hilpert, K.
2016. Amino Acids, 48 (1), 269–280. doi:10.1007/s00726-015-2082-2
High-flexibility combinatorial peptide synthesis with laser-based transfer of monomers in solid matrix material
Loeffler, F. F.; Foertsch, T. C.; Popov, R.; Mattes, D. S.; Schlageter, M.; Sedlmayr, M.; Ridder, B.; Dang, F.-X.; Bojnicic-Kninski, C. von; Weber, L. K.; Fischer, A.; Greifenstein, J.; Bykovskaya, V.; Buliev, I.; Bischoff, F. R.; Hahn, L.; Meier, M. A. R.; Bräse, S.; Powell, A. K.; Balaban, T. S.; Breitling, F.; Nesterov-Mueller, A.
2016. Nature Communications, 7, Article number 11844. doi:10.1038/ncomms11844Full textFull text of the publication as PDF document
Kombinatorische Chemie im hochdichten Arrayformat: Biochemische Synthese
Löffler, F.; Breitling, F.; Nesterov-Müller, A.
2016. Biospektrum, 22 (5), 532–534. doi:10.1007/s12268-016-0720-1
Improving short antimicrobial peptides despite elusive rules for activity
Mikut, R.; Ruden, S.; Reischl, M.; Breitling, F.; Volkmer, R.; Hilpert, K.
2016. Biochimica et Biophysica Acta - Biomembranes, 1858 (5), 1024–1033. doi:10.1016/j.bbamem.2015.12.013
Solid-material-based Coupling Efficiency Analyzed with Time-of-Flight Secondary Ion Mass Spectrometry
Muenster, B.; Welle, A.; Ridder, B.; Althuon, D.; Striffler, J.; Foertsch, T. C.; Hahn, L.; Thelen, R.; Stadler, V.; Nesterov-Mueller, A.; Breitling, F.; Loeffler, F. F.
2016. Applied surface science, 360, 306–314. doi:10.1016/j.apsusc.2015.10.223Full textFull text of the publication as PDF document
Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer
Ridder, B.; Foertsch, T. C.; Welle, A.; Mattes, D. S.; Bojnicic-Kninski, von C. M.; Loeffler, F. F.; Nesterov-Mueller, A.; Meier, M. A. R.; Breitling, F.
2016. Applied surface science, 389, 942–951. doi:10.1016/j.apsusc.2016.07.177
Replication of Polymer-Based Peptide Microarrays by Multi-Step Transfer
Striffler, J.; Mattes, D. S.; Schillo, S.; Münster, B.; Palermo, A.; Ridder, B.; Welle, A.; Trouillet, V.; Stadler, V.; Markovic, G.; Proll, G.; Bräse, S.; Loeffler, F. F.; Nesterov-Müller, A.; Breitling, F.
2016. ChemNanoMat, 2 (9), 897–903. doi:10.1002/cnma.201600194
Automated microfluidic system with optical setup for the inverstigation of peptide-antibody interactions in an array format
Weber, L. K.; Fischer, A.; Schorb, T.; Soehindrijo, M.; Förtsch, T. C.; Bojnicic-Kninski, C. von; Althuon, D.; Leffler, F. F.; Breitling, F.; Hubbuch, J.; Nesterov-Müller, A.
2016. Microsystem Technology in Germany, 50–51 
2014
High-Density Peptide Arrays with Combinatorial Laser Fusing
Maerkle, F.; Loeffler, F. F.; Schillo, S.; Foertsch, T.; Muenster, B.; Striffler, J.; Schirwitz, C.; Bischoff, F. R.; Breitling, F.; Nesterov-Müller, A.
2014. Advanced materials, 26 (22), 3730–3734. doi:10.1002/adma.201305759Full textFull text of the publication as PDF document
2013
Printing peptide arrays with a complementary metal oxide semiconductor chip
Loeffler, F. F.; Cheng, Y. C.; Muenster, B.; Striffler, J.; Liu, F. C.; Bischoff, R.; Doersam, E.; Breitling, F.; Nesterov-Mueller, A.
2013. Advances in biochemical engineering, biotechnology, Zeng, A.P. [Hrsg.] Fundamentals and Application of New Bioproduction Systems Berlin [u.a.] : Springer, 2013 (Advances in Biochemical Engineering/Biotechnology ; 137), 137, 1–23. doi:10.1007/10_2013_202
Purification of high-complexity peptide microarrays by spatially resolved array transfer to gold-coated membranes
Schirwitz, C.; Loeffler, F. F.; Felgenhauer, T.; Stadler, V.; Nesterov-Mueller, A.; Dahint, R.; Breitling, F.; Bischoff, F. R.
2013. Advanced materials, 25 (11), 1598–1602. doi:10.1002/adma.201203853
2012
Electrophotography - an efficient technology for biochip fabrication
Guettler, S.; Fulga, S.; Grzesiak, A.; Refle, O.; Bischoff, F. R.; Breitling, F.; Stadler, V.
2012. Journal of Imaging Science and Technology, 55, 040306/1–5 
Biomolecule Arrays Using Functional Combinatorial Particle Patterning on Microchips
Loeffler, F.; Schirwitz, C.; Wagner, J.; Koenig, K.; Maerkle, F.; Torralba, G.; Hausmann, M.; Bischoff, F. R.; Nesterov-Mueller, A.; Breitling, F.
2012. Advanced functional materials, 22 (12), 2503–2508. doi:10.1002/adfm.201103103
Sensing Immune Responses with Customized Peptide Microarrays
Schirwitz, C.; Loeffler, F. F.; Felgenhauer, T.; Stadler, V.; Breitling, F.; Bischoff, F. R.
2012. Biointerphases, 7 (1), 47–55. doi:10.1007/s13758-012-0047-5
2011
Alternative Setups for Automated Peptide Synthesis
Breitling, F.; Löffler, F.; Schirwitz, C.; Cheng, Y.-C.; Märkle, F.; König, K.; Felgenhauer, T.; Dörsam, E.; Bischoff, F. R.; Nesterov-Müller, A.
2011. Mini-reviews in organic chemistry, 8 (2), 121–131. doi:10.2174/157019311795177763
High-precision combinatorial deposition of micro particle patterns on a microelectronic chip
Löffler, F.; Wagner, J.; König, K.; Märkle, F.; Fernandez, S.; Schirwitz, C.; Torralba, G.; Hausmann, M.; Lindenstruth, V.; Bischoff, F. R.; Breitling, F.; Nesterov, A.
2011. Aerosol Science and Technology, 45 (1), 65–74. doi:10.1080/02786826.2010.517814
Microparticle transfer onto pixel electrodes of 45 μm pitch on HV-CMOS chips. Simulation and experiment
Wagner, J.; König, K.; Förtsch, T.; Löffler, F.; Fernandez, S.; Felgenhauer, T.; Painke, F.; Torralba, G.; Lindenstruth, V.; Stadler, V.; Bischoff, F. R.; Breitling, F.; Hausmann, M.; Nesterov-Müller, A.
2011. Sensors and Actuators A, 172 (2), 533–545. doi:10.1016/j.sna.2011.06.017
2010
Programmable high voltage CMOS chips for particle-based high-density combinatorial peptide synthesis
König, K.; Block, I.; Nesterov, A.; Torralba, G.; Fernandez, S.; Felgenhauer, T.; Leibe, K.; Schirwitz, C.; Löffler, F.; Painke, F.; Wagner, J.; Trunk, U.; Bischoff, F. R.; Breitling, F.; Stadler, V.; Hausmann, M.; Lindenstruth, V.
2010. Sensors and Actuators B, 147, 418–427. doi:10.1016/j.snb.2009.12.039
Characterization of triboelectrically charged particles deposited on dielectric surfaces
Nesterov, A.; Löffler, F.; Cheng, Y. C.; Torralba, G.; König, K.; Hausmann, M.; Lindenstruth, V.; Stadler, V.; Bischoff, F. R.; Breitling, F.
2010. Journal of Physics D, 43, 165301/1–6. doi:10.1088/0022-3727/43/16/165301
Quality analysis of selective microparticle deposition on electrically programmable surfaces
Wagner, J.; Löffler, F.; König, K.; Fernandez, S.; Nesterov-Müller, A.; Breitling, F.; Bischoff, F. R.; Stadler, V.; Hausmann, M.; Lindenstruth, V.
2010. Review of Scientific Instruments, 81, 973703/1–6. doi:10.1063/1.3456986

Before 2009 (selected publications)

Beyer, M.*, Nesterov, A.*, Block, I., König, K., Felgenhauer, T., Fernandez, S., Leibe, K., Torralba, G., Hausmann, M., Trunk, U., Lindenstruth, V., Bischoff, F.R.*, Stadler, V.*, and Breitling, F.* (2007) Combinatorial synthesis of peptide arrays onto a computer chip’s surface. Science 318, 1888
* shared first / last author

Stadler, V.*, Felgenhauer, T.*, Beyer, M., Fernandez, S., Leibe, K., Güttler, S., Gröning, M., Torralba, G., Hausmann, M., Lindenstruth, V., Nesterov, A., Block, I., Pipkorn, R., Poustka, A., Bischoff, F.R.*, and Breitling, F.* (2008) Combinatorial synthesis of peptide arrays with a laser printer. Angewandte Chemie International Edition. 47, 7132 –7135
* shared first / last author

Topic: Solid-material-based chemical synthesis. (more)
These are the first papers that describe solid material-based, miniaturized & parallelized chemical synthesis. Briefly, chemical building blocks are embedded into a solid polymer and formulated into particles. Either a laser printer or a computer chip is used to print these particles to designated areas on an acceptor. There, particles are melted to start many different coupling reactions at once.
 

Breitling, F., Dübel, S., Seehaus, T., Klewinghaus, I., and Little, M. (1991) A surface expression vector for antibody screening. Gene 104, 147-153

Fuchs, P., Breitling, F., Dübel, S., Seehaus, T., and Little, M. (1991) Targeting recombinant antibodies to the surface of Escherichia coli: Fusion to a peptidoglycan associated lipoprotein. (Nature)Biotechnology 9, 1369-1372

Rondot, S., Anthony, K., Dübel, S., Ida, N., Wiemann, S., Beyreuther, K., Frost, L., Little, M., and Breitling, F. (1998) Epitopes fused to F-Pilin are Incorporated into Functional Recombinant Pili. Journal of Molecular Biology 279, 589-603

Rondot, S.*, Koch, J.*, Breitling, F., and Dübel, S. (2001) A helper phage to improve single-chain antibody presentation in phage display. NatureBiotechnology 19, 75-78
* shared first author

Topic: Libraries of recombinant antibodies.
The Gene and (Nature)Biotechnology papers are the second and third papers to describe recombinant antibodies. The gene paper is the first paper to show that phagemids instead of normal filamentous phages can be used to display recombinant antibodies on a phage via a fusion protein (= antibody-pIII). All recombinant antibody libraries that are used today use this principle. The reason is simple: only when the phagemid – that codes for the recombinant antibody-pIII fusion protein – is packaged into particles, the expression of the antibody is turned on, resulting in only moderate selective pressure against productive antibody expression.

The Journal of Molecular Biology & Nature Biotechnology papers describe another important trick to build huge libraries of antibodies fused to phagemid particles (that code for the antibody): Using a wildtype phage with wildtype pIII envelope protein to package phagemids into particles means that most particles display only a few antibody-pIII proteins on their surface. Therefore, we designed a mutant helper phage that is devoid of wildtype pIII, and, therefore, is forced to use antibody-pIII when assembling the phage particle.